PÜLÉSTUDOMÁNYI KÖZLEMÉNYEK KÜLÖNSZÁM 2008. ÁPRILIS 11

Turóczi Antal

NÉGYROTOROS PILÓTANÉLKÜLI HELIKOPTER FEDÉLZETI REPÜLÉSSZABÁLYZÓJÁNAK ELŐZETES TERVEZÉSE LQG MÓDSZERREL

BEVEZETÉS

Az utóbbi időben a négyrotoros elrendezésű helikopter – a szabályozástechnika és a mikroelektronika fejlődésének köszönhetően – újból a kutatások és fejlesztések tárgyává vált. A kisméretű, elektromotoros meghajtású, fix állásszögű rotorokkal rendelkező géptípusokkal, egyszerű mechanikai felépítésű, robusztus, ezáltal megbízható pilóta nélküli repülő eszköz valósítható meg. A robusztusság mellet azonban szükség van olyan fedélzeti elektronikai berendezésre, robotpilótára is, amely lehetővé teszi az egyébként manuálisan nehezen irányítható helikopter egyszerű működtetését. A cikk egy kísérleti négyrotoros rendszer fedélzeti repülésszabályozójának számítógéppel segített előzetes tervezését mutatja be.

A NÉGYROTOROS HELIKOPTER MATEMATIKAI MODELLJE

A négyrotoros helikoptert több bemenetű több kimenetű rendszerként fogható fel. A pilóta vagy robotpilóta irányító jelei és a helikopter irányító jelekre adott válaszai közötti összefüggés – felhasználva a fizika elfogadott tapasztalati törvényszerűségeit – matematikai egyenletek formájában írható le. A későbbi szabályozástechnikai tervezésben ezen egyenletrendszerből származtathatók a különböző repülési üzemmódok leírásához legmegfelelőbb, egyszerűsített matematikai modellek. Bár a teljes rendszer "valódi" bemenetei a motorok kapocsfeszültségei lesznek, első lépésben tekintsük formális bemeneti jeleknek a rotorlapátokon ébredő eredő felhajtó erőket. A későbbiekben természetesen figyelembe kell venni az elektromotorokat is, mint közbenső dinamikus rendszereket.

A merev testnek tekintett helikopter¹ mozgásállapotának időbeli változási sebességét a következő differenciál-egyenletrendszerrel írhatjuk le:

$$\dot{\mathbf{r}}(t) = \mathbf{v}(t) \tag{1a}$$

$$\underline{\dot{\mathbf{v}}}(t) = -\underline{\mathbf{g}} + \frac{1}{\mathbf{m}_0} \underline{\underline{\mathbf{R}}}(t) \cdot \underline{\underline{\mathbf{F}}}_{\mathrm{f}(\mathrm{K})}(t)$$
(1b)

$$\underline{\underline{\dot{\mathbf{R}}}}(t) = \underline{\underline{\mathbf{R}}}(t) \underbrace{\underline{\widetilde{\mathbf{M}}}}_{(\mathbf{K})}(t) \tag{1c}$$

¹ A helikopter valójában rugalmas alkotóelemekből épül fel melyek elasztikus mozgással jellemezhetők. A tervezés során azonban az ebből adódó hatásokat elhanyagolhatónak tekintem.

$$\underline{\dot{\boldsymbol{\omega}}}_{(\mathrm{K})}(t) = \underline{\mathbf{J}}_{=(\mathrm{K})}^{-1} \left(-\underline{\widetilde{\boldsymbol{\omega}}}_{(\mathrm{K})}(t) \cdot \underline{\mathbf{J}}_{=(\mathrm{K})} \underline{\boldsymbol{\omega}}_{(\mathrm{K})}(t) + \underline{\mathbf{M}}_{\operatorname{aero}(\mathrm{K})}(t) - \underline{\mathbf{M}}_{\mathrm{G}(\mathrm{K})}(t) \right)$$
(1d)

- <u>**r**</u>: a tömegközéppont helyvektora, pozíciója
- <u>v</u> : a tömegközéppont sebességvektora,
- g: gravitációs gyorsulás vektora
- <u>**F**</u>_f : A rotorok által keltett felhajtóerő eredője

$$\underline{\mathbf{F}}_{f(K)} = \begin{bmatrix} 0 \\ 0 \\ C_{f} \left(\Omega_{1}^{2} + \Omega_{2}^{2} + \Omega_{3}^{2} + \Omega_{4}^{2} \right) \end{bmatrix}$$
(2)

- **R** : a forgatási vagy rotáció mátrix,
- $\underline{\omega}$: a szögsebesség-vektor,
- $\underline{\tilde{\omega}}$: a szögsebesség-mátrix,

$$\underline{\mathbf{\omega}}(t) = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} \longrightarrow \qquad \underline{\widetilde{\mathbf{\omega}}}(t) = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$
(3)

- <u>**J**</u> : a test tehetetlenségi tenzora,
- <u>M</u>_{aero}: a testre ható aerodinamikai forgatónyomatékok eredőjének vektora,

$$\underline{\mathbf{M}}_{aero(\mathbf{K})} = \begin{bmatrix} \mathbf{d} \cdot \mathbf{C}_{\mathrm{f}} \left(\mathcal{Q}_{2}^{2} - \mathcal{Q}_{4}^{2} \right) \\ \mathbf{d} \cdot \mathbf{C}_{\mathrm{f}} \left(\mathcal{Q}_{3}^{2} - \mathcal{Q}_{1}^{2} \right) \\ \mathbf{C}_{\mathrm{r}} \left(\mathcal{Q}_{1}^{2} + \mathcal{Q}_{3}^{2} - \mathcal{Q}_{2}^{2} - \mathcal{Q}_{4}^{2} \right) \end{bmatrix}$$
(4)

– <u>M</u>_G: a pörgettyű- vagy giroszkóp-hatásból adódó forgatónyomatékok eredőjének vektora.

$$\underline{\mathbf{M}}_{\mathrm{G}(\mathrm{K})} = \mathbf{J}_{\mathrm{rez}} \begin{bmatrix} \omega_{y} (\Omega_{2} + \Omega_{4} - \Omega_{1} - \Omega_{3}) \\ -\omega_{x} (\Omega_{2} + \Omega_{4} - \Omega_{1} - \Omega_{3}) \\ 0 \end{bmatrix}_{\mathrm{(K)}}$$
(5)

A \mathbf{K}_0 inerciarendszerben felvett mennyiségek külön jelölés nélkül, a \mathbf{K} test-koordinátarendszerben értendőket _(K) alsóindexszel láthatók (1. ábra). Az idő szerinti differenciálás az (1a-b) egyenletekben \mathbf{K}_0 -ban, az (1c-d) egyenletekben \mathbf{K} -ban értendő. A C_f és C_r konstansok a rotorok geometriai méreteitől valamint a levegő aktuális fizikai jellemzőitől (nyomás, hőmérséklet stb.) függenek, *d* a rotorok forgástengelyének tömegközépponttól mért távolsága, Ω_i az *i*-edik rotor szögsebessége [1][2][3].

1. ábra. A K₀ és K koordináta rendszerek definíciója [Szerk.: Turóczi A. - MS Word]

LQG SZABÁLYZÓTERVEZÉSI MÓDSZER

Az LQR² módszer

A többváltozós modern szabályzó-tervezési eljárások egyike az LQR módszer, amely a

$$J = \frac{1}{2} \int_{t=0}^{\infty} \left(\underline{\mathbf{x}}^{\mathrm{T}} \underline{\mathbf{Q}} \ \underline{\mathbf{x}} + \underline{\mathbf{u}}^{\mathrm{T}} \underline{\mathbf{R}} \ \underline{\mathbf{u}} \right) dt$$
(6)

négyzetes integrálkritérium minimálásával optimális állapot-visszacsatolási mátrixot ad eredményül. Az optimális vezérlési törvény zérusértékű bemeneti jel esetén:

$$\underline{\mathbf{u}} = -\underline{\underline{\mathbf{K}}}_{opt} \underline{\mathbf{x}} \tag{7}$$

lesz, melyből a 2. ábra hatásvázlata következik. A $\underline{\mathbf{K}}_{opt}$ visszacsatolási mátrixot $\underline{\mathbf{A}}$, $\underline{\mathbf{B}}$, $\underline{\mathbf{Q}}$, és $\underline{\mathbf{R}}$ ismeretében az

$$\underline{\underline{\mathbf{A}}}^{\mathrm{T}}\underline{\underline{\mathbf{P}}} + \underline{\underline{\mathbf{P}}}^{\mathrm{T}}\underline{\underline{\mathbf{A}}} + \underline{\underline{\mathbf{Q}}} - \underline{\underline{\mathbf{P}}}\underline{\underline{\mathbf{B}}}\underline{\underline{\mathbf{R}}}^{-1}\underline{\underline{\mathbf{B}}}^{\mathrm{T}}\underline{\underline{\mathbf{P}}} = \underline{\underline{\mathbf{0}}}$$
(8)

Riccati-egyenlet <u>P</u> megoldásából határozhatjuk meg:

$$\underline{\underline{\mathbf{K}}}_{opt} = \underline{\underline{\mathbf{R}}}^{-1} \underline{\underline{\mathbf{B}}}^{\mathrm{T}} \underline{\underline{\mathbf{P}}}$$
⁽⁹⁾

A feladat megoldását a MATLAB programcsalád Control System Toolbox csomagjának lqr.m függvénye támogatja. A J = minimum tervezési kritériumnak nincs olyan szemléletes fizikai jelentése, mint a klasszikus módszereknél megszokott fázistöbblet, túllendülés, szabályzási idő stb. kifejezéseknek. Ezért a hagyományos értelemben vett minőségi jellemzők **Q** és **R** súlyozó mátrixokkal történő beállítása némi tervezési tapasztalatot igényel. [4][5][6][7][8].

² LQR: Linear Quadratic Regulator

2. ábra. Teljes állapot-visszacsatolású szabályozási rendszer hatásvázlata [Szerk.: Turóczi A. - MS Word]

Az LQE³ módszer

Az LQR feladatnál feltételeztük, hogy a rendszer összes állapotváltozója hozzáférhető, így a teljesállapotvisszacsatolás megvalósítható. A gyakorlatban azonban nem minden esetben lehetséges vagy gazdaságos minden állapotváltozó mérése, ráadásul a mérési eredményeket tökéletlen, zajos, és korlátozott sávszélességű szenzorok szolgáltatják. Ezért az állapotváltozókat a mérési eredményekből, a zajok statisztikai jellemzőinek és a rendszer dinamikus modelljének ismeretében kell megbecsülni, az állapot-visszacsatolást pedig a becsült állapotváltozókról kell megvalósítani. Erre a problémára, kvadratikus kritérium szerint optimális megoldást ad az LQG⁴ tervezési módszer. Az LQG feladat a szeparációs elv alapján szétbontható egy optimális LQE állapotbecslési és egy LQR optimális szabályzó-tervezési feladatra [4][5][6][8].

Az állapotbecsléshez az irányított szakasz lineáris állapotteres leírásából és a rendszert terhelő zajok statisztikai tulajdonságaiból indulunk ki:

$$\underline{\dot{\mathbf{x}}} = \underline{\underline{\mathbf{A}}} \mathbf{x} + \underline{\underline{\mathbf{B}}} \mathbf{u} + \underline{\underline{\mathbf{G}}} \mathbf{w}$$

$$\underline{\mathbf{y}} = \underline{\underline{\mathbf{C}}} \mathbf{x} + \underline{\mathbf{v}}$$
(10)

ahol a $\underline{\mathbf{w}}(t)$ rendszerzaj és a $\underline{\mathbf{v}}(t)$ szenzorzaj korrelálatlan, normális eloszlású, zérus várható értékű, $\underline{\mathbf{Q}}_w$ és $\underline{\mathbf{R}}_v$ kovarianciájú sztochasztikus mennyiségek melyekre:

$$E = \frac{1}{2} v(t) \frac{1}{3} 0 \qquad E = \frac{1}{2} v(t) \frac{1}{3} 0$$

$$E = \frac{1}{2} v(t) \underline{\mathbf{w}}^{\mathrm{T}}(t+\tau) \frac{1}{3} \underline{\mathbf{Q}}_{w} \delta(\tau) \qquad E = \frac{1}{2} v(t) \underline{\mathbf{v}}^{\mathrm{T}}(t+\tau) \frac{1}{3} \underline{\mathbf{R}}_{v} \delta(\tau) \qquad (11)$$

$$E = \frac{1}{2} v(t) \underline{\mathbf{v}}^{\mathrm{T}}(t+\tau) \frac{1}{3} 0$$

³ LQE: Linear Quadratic Estimator

⁴ LQG: Linear Quadratic Gaussian

A 3. ábraán a szakasz, és annak állapotváltozóit becslő Kalman-Bucy szűrő hatásvázlata látható. A mért $\underline{\mathbf{y}}(t)$ kimenet és a becsült $\hat{\underline{\mathbf{y}}}(t)$ kimenet közötti különbség, az $\underline{\mathbf{e}}(t) = \underline{\mathbf{y}}(t) - \hat{\underline{\mathbf{y}}}(t)$ kimeneti hibajel, a megfelelően választott $\underline{\mathbf{L}}$ súlyozó mátrixon keresztül vissza van csatolva a becslő integrátorának bemenetére.

3. ábra. Kálmán-Bucy szűrő hatásvázlata [Szerk.: Turóczi A. - MS Word]

A becslés akkor lesz optimális, ha a valós $\underline{\mathbf{x}}(t)$ és a becsült $\underline{\mathbf{\hat{x}}}(t)$ állapotvektorok $\underline{\mathbf{\tilde{x}}}(t) = \underline{\mathbf{x}}(t) - \underline{\mathbf{\hat{x}}}(t)$ különbségének varianciája minimális értékű, vagyis:

$$E \underbrace{\mathbf{\tilde{x}}}_{\mathbf{\tilde{x}}}(t) \underbrace{\mathbf{\tilde{x}}}_{\mathbf{\tilde{x}}}^{\mathrm{T}}(t) \underbrace{\mathbf{\tilde{x}}}_{\mathbf{\tilde{x}}} \min$$
(12)

A (12) kritériumnak megfelelő $t \rightarrow \infty$ statikus <u>L</u> visszacsatolási mátrixot a

$$\underline{\underline{AP}} + \underline{\underline{PA}}^{\mathrm{T}} + \underline{\underline{GQ}}_{w} \underline{\underline{G}}^{\mathrm{T}} - \underline{\underline{PC}}^{\mathrm{T}} \underline{\underline{R}}_{v}^{-1} \underline{\underline{CP}} = \underline{\underline{0}}$$
(13)

Riccati egyenlet **P** megoldásából kaphatjuk meg:

$$\underline{\mathbf{L}}_{opt} = \underline{\underline{\mathbf{P}}} \underline{\underline{\mathbf{C}}}^{\mathrm{T}} \underline{\underline{\mathbf{R}}}_{\upsilon}^{-1}$$
(14)

Az optimális állapotbecslő állapotegyenlete:

$$\dot{\underline{x}} = \underline{\underline{u}} - \underline{\underline{L}}\underline{\underline{C}}\,\,\overline{\underline{x}} + \underline{\underline{u}} \quad \underline{\underline{L}}\begin{bmatrix}\underline{\underline{u}}\\\underline{\underline{y}}\end{bmatrix}$$

$$\dot{\underline{y}} = \underline{\underline{C}}\,\,\underline{\underline{x}}$$
(15)

A teljes LQG szabályzó hatásvázlatát a 4. ábra szemlélteti [7][8][9][10].

4. ábra. LQG szabályozási rendszer hatásvázlata [Szerk.: Turóczi A. - MS Word]

Fedélzeti LQG repülésszabályzó tervezése

Optimális állapotbecslő tervezése

A repülésirányító automatikának az a feladata, hogy a test koordináta rendszer origójának sebessége valamint a tengelyek szögsebessége a repülési feladatnak megfelelően változzon a navigációs koordináta rendszerhez képest. Ha útvonalrepülésről van szó, ez azt jelenti, hogy a repülőgép tömegközéppontja előre definiált térbeli pontokon keresztül halad. A szabályzó algoritmusnak tehát "ismernie" kell a helikopter aktuális mozgásállapotát. Az állapotváltozóknak azonban csak egy részét lehet közvetlenül mérni, a többit becsülni kell. A kísérleti rendszerben lévő inerciális szenzormodul a beépített gyorsulásmérők, giroszkópok – melyek a $\underline{v}_{(K)}(t)$ gyorsulás és $\underline{o}_{(K)}(t)$ szögsebességet közvetlenül mérik – és mágneses szenzorok kalibrált mérési eredményeit felhasználva, adott pontossággal képes meghatározni a ϕ , θ , és ψ Euler-szögeket, vagyis a helikopter orientációját. Az $\underline{r}(t)$ pozíciót és a $\underline{v}(t)$ sebességet a gyorsulás adatokból csak integrálással lehet számolni. Ez a gyorsulásmérő mérési pontatlansága (zaj, nemlinearitás, tengelyszög eltérés stb.) miatt a pozíció és sebesség adatokban akkumulálódó hibát eredményez. A problémát a gyakorlatban további szenzorok alkalmazásával szokták orvosolni [8][11][12].

- Magasságmérés abszolút nyomásmérővel
- Szélsebesség mérés differenciális nyomásmérővel
- Ultrahangos magasságmérés kis magasságokban
- Lézeres távolságmérés
- Rádiónavigáció (ILS⁵, VOR⁶, ADF⁷...).
- Globális helyzet-meghatározás (GPS⁸)
- Képfeldolgozáson alapuló helyzet-meghatározás

A beltéri alkalmazású kísérleti rendszer számára a felsorolt megoldások közül csak az ultrahangos magasságmérés és a képfeldolgozáson alapuló helyzet-meghatározás jöhet számításba, de ez utóbbit bonyolultsága, számítási teljesítményigénye és költségei miatt el kellett vetni. Az ultrahangos magasságmérővel az r_z pozíciót és a v_z sebességet akkumulálódó hiba nélkül lehet mérni, az r_x , r_y , v_x és v_y állapotváltozók azonban továbbra is csak integrálással számíthatók. Ebből következik, hogy a repülésszabályzó csak növekvő hibával lesz képes követni, az ezekre a bemenetekre adott alapjelet.

Az r_z állapotváltozót, a magasságot, az ultrahangos magasságmérővel közvetlenül, az inerciális mérőegység z_k irányú gyorsulásmérőjével közvetve, a gyorsulás adat kétszeres idő szerinti integrálásával határozhatjuk meg. Az ultrahangos magasságmérő kis térbeli és időbeli felbontással, de időben állandó mérési hibával rendelkezik. Ennek komplementereként, a gyorsulásmérővel viszonylag nagy térbeli és időbeli felbontás érhető el, de a gyorsulásmérés hibájának kétszeri integrálása a magasság adatban akkumulálódó hibát eredményez. Érdemes tehát mindkét mérési módszert felhasználva megbecsülni a magasság adatot, így pontosabb eredményt kaphatunk, mint az egyes mérésekkel külön-külön.

5. ábra. A gyorsulásmérő modellje [Készítette.: Turóczi A. - MS Word]

Az inerciális mérőegység z_k irányú gyorsulásmérőjének zajtulajdonságait méréssorozattal lehet meghatározni, felhasználva a szenzor 5. ábra szerinti modelljét [8]. A mérés során a modult közel vízszintes helyzetben kell rögzíteni, így biztosítható, hogy a z_k irányú gyorsulásmérőre csak az állandó $a_t = g$ értékű nehézségi gyorsulás hasson. A 5. ábra jelöléseit használva:

$$a_i = a_t + w \tag{16}$$

$$a_t = g = \acute{a}ll.$$

⁵ ILS: Instrumental Landing System

⁶ VOR: VHF Omni Range

⁷ ADF: Automatic Direction Finder

⁸ GPS: Global Positioning System

A kapott a_i adatsort így normális eloszlású, m = 9.805 várható értékű, $\sigma = 0,01$ szórású normális eloszlással lehet közelíteni. Az eloszlás paramétereit a MATLAB Statistical Toolbox normfit.m függvényének segítségével határozható meg. A mérési eredmények és az azt közelítő normális eloszlás sűrűségfüggvényét a 6. ábra szemlélteti.

6. ábra. A Xsens modul z_k irányú gyorsulás jelének eloszlása m = 9,805 várható értékű, $\sigma = 0,01$ szórású normális eloszlással közelítve [Készítette.: Turóczi A. - MATLAB]

A (16) összefüggések alapján a w szenzor-zaj eloszlása ugyancsak $\sigma_w = 0,01$ szórású, de $m_w = 0$ várható értékű normális eloszlás lesz.

7. ábra. Az ultrahangos magasságmérő modellje [Készítette.: Turóczi A. - MS Word]

Az ultrahangos magasságmérő zajmodelljének meghatározásához a 7. ábra hatásvázlata MATLAB Simulink környezetben kiegészül egy kvantáló egységgel, amely a szenzor 1cm-es felbontását hivatott modellezni.

8. ábra. Az ultrahangos magasságmérő Simulink modellje [Készítette.: Turóczi A. - Simulink]

A szimuláció és az ultrahangos szenzorral végzett mérések tapasztalataira támaszkodva arra a következtetésre jutothatunk, hogy a 8. ábra Simulink modellje a zajforrás $\sigma_v = 0,01$ szórású, $m_v = 0$ várható értékű normális eloszlású kimeneti jele esetén megfelelő pontossággal közelíti a valóságban lejátszódó folyamatokat. A fentiek alapján definiálhatjuk az

$$Q_w = \sigma_w^2$$

$$R_v = \sigma_v^2$$
(17)

kovarianciákat. A Kálmán-szűrő tervezéshez írjuk fel a magasságmérésre vonatkozó (10) szerinti

$$\begin{bmatrix} \dot{v}_i \\ \dot{r}_i \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_i \\ r_i \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} a_i + \begin{bmatrix} 1 \\ 0 \end{bmatrix} w$$

$$(\dot{\mathbf{x}} = \underline{\mathbf{A}} \quad \mathbf{x} + \underline{\mathbf{B}} \ \mathbf{u} + \ \underline{\mathbf{G}} \mathbf{w})$$
(18)

$$r_{u} = \begin{bmatrix} v_{i} \\ r_{i} \end{bmatrix} + \upsilon$$

$$(\underline{\mathbf{y}} = \underline{\mathbf{C}} \quad \underline{\mathbf{x}} + \underline{\mathbf{v}})$$
(19)

állapotegyenlet, amelyből (17-19) összefüggéseket felhasználva, a MATLAB kalman.m függvényének segítségével kiszámolható az állapotbecslő optimális <u>L</u> visszacsatoló mátrixa:

$$\underline{\mathbf{L}} = \begin{bmatrix} 1\\ \sqrt{2} \end{bmatrix}$$
(20)

Felhasználva a (15) és (18-20) összefüggéseket az optimális állapotbecslő állapotegyenlete:

$$\begin{bmatrix} \dot{\hat{v}}_i \\ \dot{\hat{r}}_i \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & -\sqrt{2} \end{bmatrix} \begin{bmatrix} \hat{v}_i \\ \hat{r}_i \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} a_i \\ r_u \end{bmatrix}$$

$$(\dot{\hat{\mathbf{x}}} = \mathbf{\mathbf{x}} - \mathbf{\underline{L}} \mathbf{\mathbf{\underline{C}}} \mathbf{\mathbf{\hat{x}}} + \mathbf{\mathbf{x}} \mathbf{\underline{L}} \mathbf{\underline{L}} \begin{bmatrix} \mathbf{\underline{u}} \\ \mathbf{\underline{y}} \end{bmatrix})$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{v}_i \\ \hat{r}_i \end{bmatrix}$$

$$(\mathbf{\underline{\hat{y}}} = \mathbf{\underline{C}} \mathbf{\underline{x}})$$

$$(21)$$

A megtervezett Kálmán-szűrő működésének ellenőrzésére MATLAB Simulink környezetben elvégzett mérések eredményeit a 9. ábra-10. ábraák szemléltetik.

9. ábra. Sebesség időfüggvények [Készítette.: Turóczi A. - MATLAB]

10. ábra. Magasság időfüggvények [Készítette.: Turóczi A. - MATLAB]

LQR szabályzó tervezése

Lineáris szabályzó tervezéséhez a kísérleti rendszer (1) nemlineáris modelljét az adott repülési üzemmódnak megfelelő munkapont közelében linearizálni kell. A lebegéshez közeli, kis szögkitérésekkel járó üzemmódokban a rendszer a következő lineáris állapotegyenlettel közelíthető:

			~	~		~	~	~	~	~	~	~	~ -		Г	-		~			
r_x		0	0	0	1	0	0	0	0	0	0	0	0	r_x		0	0	0	0		
\dot{r}_{y}		0	0	0	0	1	0	0	0	0	0	0	0	r_y		0	0	0	0		
\dot{r}_z		0	0	0	0	0	1	0	0	0	0	0	0	r_z		0	0	0	0		
\dot{v}_x		0	0	0	0	0	0	0	9,7	0	0	0	0	v _x		0	0	0	0		
\dot{v}_{y}		0	0	0	0	0	0	- 9,7	0	0	0	0	0	v _v		0	0	0	0	$\begin{bmatrix} u_1 \end{bmatrix}$	
\dot{v}_z		0	0	0	0	0	0	0	0	0	0	0	0	v_z		1	1	1	1	$10^{-3} u_2$	
$\dot{\phi}$	=	0	0	0	0	0	0	0	0	0	1	0	0	ϕ	+	0	0	0	0	u_3	
$\dot{\theta}$		0	0	0	0	0	0	0	0	0	0	1	0	θ		0	0	0	0	u_4	
ψ		0	0	0	0	0	0	0	0	0	0	0	1	$ \psi $		0	0	0	0	<u><u><u>u</u></u>_[1x4]</u>	
$\dot{\omega}_x$		0	0	0	0	0	0	0	0	0	0	0	0	ω_x		0	28,6	0	-28,6		
$\dot{\omega}_{v}$		0	0	0	0	0	0	0	0	0	0	0	0	$ \omega_v $		-28,4	0	28,4	0		
$\dot{\omega}_z$		0	0	0	0	0	0	0	0	0	0	0	0	ω_z		0,13	-0,13	0,13	-0,13		
<u>×</u> [1x12]								A [12x12]						x _[1x12]	C		<u>B</u>	12]			
								-[12312]									=[+1	1 2]			(23

 $\underline{\mathbf{y}}_{[1x12]} = \underline{\underline{\mathbf{C}}}_{[12x12]} \underline{\underline{\mathbf{x}}}_{[1x12]} + \underline{\underline{\mathbf{D}}}_{[4x12]} \underline{\underline{\mathbf{u}}}_{[1x4]}$

 $\underline{\underline{\mathbf{D}}}_{[4x12]} = \underline{\underline{\mathbf{0}}}$ $\underline{\underline{\mathbf{C}}}_{[12x12]} = \underline{\underline{\mathbf{I}}}$

3) (2

A lineáris matematikai modelljéből kiindulva, a megfelelő súlyozó mátrixok meghatározása után az LQR szabályzó \underline{K} visszacsatolási mátrixa a MATLAB lqr.m függvényének segítségével egyszerűen számolható. Az így létrejövő szabályozási rendszer statikus viselkedését azonban nagyban befolyásolja a rendszerparaméterek ismeretének pontossága, valamint a rendszer kimenetét érő zavarok hatása. A statikus hiba elhárítása érdekében ezért a külső visszacsatolási hurokba integrátort célszerű beiktatni. Ezt a módszert tulajdonképpen az állapotváltozók számának bővítésére lehet visszavezetni, bár az új állapotváltozók valójában a szabályzóban keletkeznek.

Az r_x , és r_y állapotváltozóknál nincs értelme integrátor beiktatásának, mivel a jelek a zajos gyorsulásmérésből kerülnek meghatározásra, és ebből adódóan akkumulálódó hibát tartalmaznak. A v_x , v_y , v_z , ϕ , θ , ω_x , ω_y és ω_z állapotváltozóknál szintén nincs szükség integrátorra, mivel az integrál jelek az \underline{A} mátrixon történő belső visszacsatolás következtében más állapotváltozókon keresztül hozzáférhetők.

A fenti megfontolások alapján a (23) szerinti modell kiegészült két további állapotváltozóval melyekre:

$$\dot{r}_{iz} = r_z \tag{24}$$
$$\dot{\psi}_i = \psi$$

Ezzel a rendszer paramétermátrixai, felhasználva (23-24)-ben alkalmazott jelöléseket, az alábbiak lesznek:

$\dot{\omega}_x$ $\dot{\omega}_y$		0 0	$\left \begin{array}{c} \omega_x \\ \omega_y \end{array} \right $		0 - 28,4	28,6 0	0 28,4	- 28,6 0															
$\dot{\psi}$ $\dot{\omega}_x$		0 0	1 0	$\left \begin{array}{c} \psi \\ \omega_x \end{array} \right $		0 0	0 28,6	0 0	0 - 28,6														
$\dot{ heta}$		0	0	0	0	0	0	0	0	0	0	0	0	1	0	θ		0	0	0	0	<u><u>u</u>_[1x4]</u>	
$\dot{\phi}^{v_z}$		0	0	0	0	0	0	0	0	0	0	0	0 1	0	0	ϕ		0	0	0	0	u_3 u_4	
v _y	=	0	0	0	0	0	0	0	0	-9,7	0	0	0	0	0	v _y	+	1	1	1	1	$\cdot 10^{-3} u_2$	
\dot{v}_x		0	0	0	0	0	0	0	0	0	9,7	0	0	0	0	v _x		0	0	0	0		
\dot{r}_z		0	0	0	0	0	0	0	1	0	0	0	0	0	0	r_z		0	0	0	0		
\dot{r}_x		0	0	0 0	0 0	0 0	1 0	0	0	0	0	0	0	0 0	0	r_x r_y		0	0	0	0		
$\dot{\psi}_i$		0	0	0	0	0	0	0	0	0	0	1	0	0	0	$ \psi_i $		0	0	0	0		
\dot{r}_{iz}]	0	0	0	0	1	0	0	0	0	0	0	0	0	0	r_{iz}		0	0	0	0		

Az LQR tervezési feladat megoldásához a $\underline{\mathbf{Q}}$ és $\underline{\mathbf{R}}$ súlyozó-mátrixokat is meg kell határozni. Első közelítésben a reciprok négyzetes szabályt alkalmazhatjuk [5][8]. Sorozatos szimuláció és paraméterhangolás után végül az alábbi súlyozó-mátrixok adódtak megfelelőnek:

$$\underline{\mathbf{Q}} = \text{diag}(0.01, \ 0.11, \ 100, \ 100, \ 1, \ 1, \ 1, \ 3.64, \ 3.64, \ 0.02, \ 0.04, \ 0.04, \ 0.1)
 \\
 \underline{\mathbf{R}} = \text{diag}(8.93, \ 8.93, \ 8.93, \ 8.93) \cdot 10^{-8}$$
(26)

A MATLAB lqr.m program futtatásának eredménye a (25-26) egyenletekből származó <u>A</u>, <u>B</u>, <u>Q</u>és <u>R</u> mátrixok megadásával a

 $\mathbf{\underline{K}} = \begin{bmatrix} 0,16 & 0,55 & 23,6 & 0 & 1,85 & 9,7 & 0 & 1,92 & 0 & -18,3 & 1,72 & 0 & -1,7 & 2,61 \\ 0,16 & -0,55 & 0 & 23,6 & 1,85 & 0 & 9,7 & 1,92 & 18,3 & 0 & -1,72 & 1,7 & 0 & -2,61 \\ 0,16 & 0,55 & -23,6 & 0 & 1,85 & -9,7 & 0 & 1,92 & 0 & 18,3 & 1,72 & 0 & 1,7 & 2,61 \\ 0,16 & -0,55 & 0 & -23,6 & 1,85 & 0 & -9,7 & 1,92 & -18,3 & 0 & -1,72 & -1,7 & 0 & -2,61 \end{bmatrix} \cdot 10^{3} (27)$

visszacsatoló mátrix.

Szimuláció

A fedélzeti repülésszabályzó tervezését nagyban segíti a kísérleti rendszer nemlineáris MATLAB Simulink modelljének vizsgálata. A modellel végzett szimulációk eredményeit felhasználva következtetéseket lehet levonni a rendszerben lezajló folyamatokról és a szabályzó körök minőségi jellemzőiről anélkül, hogy a valóságos rendszer épsége veszélybe kerülne. Természetesen a szimuláció nem helyettesíti a valós rendszerrel végzett kísérleteket, a megfelelő szabályzó struktúra kialakításának és a paraméterek hangolásának folyamatát azonban nagymértékben felgyorsítja. A rendszer

$$r_{ax} = r_{ay} = r_{az} = 1 \text{ m},$$

$$v_{ax} = v_{ay} = v_{az} = 0 \text{ m/s},$$

$$w_{ax} = w_{ay} = w_{az} = 0 \text{ rad/sec}$$

$$\phi_a = \theta_a = 0^\circ, \ \psi_a = 10^\circ$$

alapjelekre lefuttatott szimulációjának eredményeit a 11-14. ábraák szemléltetik. Hosszabb szimulációs időt választva láthatóvá válik, hogy az r_x , r_y , v_x , v_y jelek – a vártnak megfelelően – csak akkumulálódó hibával képesek követni az alapjelet. A szabályzási időt a korlátos motorfeszültség miatt ugyancsak korlátos rotor-szögsebesség határozza meg, ezért a rendszert csak a tápfeszültség növelésével és/vagy a beavatkozó szervek cseréjével lehetne felgyorsítani.

11. ábra. Az r_x, r_y és r_z pozíció időfüggvényei [Készítette.: Turóczi A. - MATLAB]

12. ábra. Az v_x, v_y és v_z sebességek időfüggvényei [Készítette.: Turóczi A. - MATLAB]

13. ábra. A ϕ , θ és ψ szögek időfüggvényei [Készítette.: Turóczi A. - MATLAB]

14. ábra. Az ω_x , ω_y és ω_z szögsebességek időfüggvényei [Készítette.: Turóczi A. - MATLAB]

ÖSSZEFOGLALÁS

A kísérleti négyrotoros helikopter nemlineáris matematikai modelljéből, egyszerűsítéseket és elhanyagolásokat alkalmazva meghatározható annak kis bedöntési és bólintási szögekre érvényes lineáris matematikai modellje, amelyhez így lineáris szabályzó tervezhető. A helikopter lineáris modelljében szereplő állapotváltozók közül, nem mindegyiket lehet közvetlenül mérni, ezért a teljes állapot-visszacsatolás megvalósításához állapotbecslést kell alkalmazni. A magasságméréshez megtervezett Kálmán-szűrő az ultrahangos magasságmérő és az inerciális mérőegység méréseit használja fel az optimális becsléshez. Az irányszögben és a magasságban keletkező statikus hiba megszüntetése érdekében az állapotvektort további két állapotváltozóval kell kibővíteni. A többi, közvetlenül nem mérhető állapotváltozónál tapasztalható alapjel-követési hibát további szenzorok alkalmazása nélkül nem lehet kiküszöbölni. A megtervezett LQG szabályzó, a MATLAB Simulink-ben elvégzett szimulációk alapján alkalmas a kísérleti helikopter kis bedöntési és bólintási szögkitéréssel járó repülési üzemmódjainak stabilizálására.

FELHASZNÁLT IRODALOM

- [1.] CSIZMADIA, NÁDORI: Mechanika Mérnököknek: Mozgástan, Nemzeti tankönyvkiadó, 1997. ISBN: 963-19-2353-3
- [2.] T. HAMEL, R. MAHONY, R. LOZANO and J. OSTROWSKI: Dynamic modelling and configuration stabilization for an X4flyer, In Proc. of IFAC World Congress, Barcelona, Spain, 2002. Letöltve: 2007-09-15. <u>http://www.quanser.com/english/downloads/products/X4flyer Hamel 2012.pdf</u>
- [3.] BOUABDALLAH, S., MURRIERI, P., and SIEGWART, R.: *Design and Control of an Indoor Micro Quadrotor*, ICRA, New Orleans, April 2004. Letöltve: 2007-09-15. <u>http://asl.epfl.ch/aslInternalWeb/ASL/publications/uploadedFiles/325.pdf</u>
- [4.] LANTOS B.: Irányítási rendszerek elmélete és tervezése I., Akadémiai Kiadó, Budapest, 2002. ISBN: 963-05-7787-9
- [5.] SZABOLCSI R.: Modern szabályozástechnika, Egyetemi Jegyzet, Budapest 2004.
- [6.] Ad DAMEN: Modern Control Theory, Eindhoven University of Technology, Eindhoven, 2002.
- [7.] SZEGEDI Péter: Repülésszabályzó rendszerek szabályozóinak számítógépes analízise és szintézise, PhD értekezés, 2005.
- [8.] P. S. MAYBECK: Stochastic Models, Estimation, and Control Volume III., Academic Press, London, 1982.
- [9.] SIMON: Optimal State Estimation, Wiley and Sons, Inc., Hoboken NJ, 2006. ISBN: 978-0-471-70858-2
- [10.] K. J. ÅSTRÖM: *Model Uncertainty and Robust Control*, Lund University, Lund, Sweden, Letöltve: 2007-02-05. http://www.ee.adfa.edu.au/staff/hrp/Literature/articles/astrom-modeluncertainty.pdf
- [11.] S. RÖNBACK: Development of a INS/GPS navigation loop, Master's thesis, Lulea University of technology, 2000.
- [12.] GREWAL, WEILL, ANDREWS: Global Positioning Systems, Inertial, Navigation, and Integration, John Wiley & Sons Inc., 2001.